Fault Diagnosis of Quadruped Robot Joint Modules Based on TDIC and Random Forest
ID:62 Submission ID:103 View Protection:ATTENDEE Updated Time:2024-10-23 10:43:36 Hits:32 Oral Presentation

Start Time:2024-11-01 16:20 (Asia/Shanghai)

Duration:20min

Session:[P3] Parallel Session 3 » [P3-1] Parallel Session 3(November 1 PM)

No files

Abstract
摘要—随着机器人技术的发展,四足机器人在救援任务和医疗保健等各个领域发挥着重要作用。然而,由于工作条件复杂,四足机器人关节模块中的组件经常受到交变和冲击载荷的影响。因此,研究关节模块中行星减速机的信号处理和故障诊断技术具有重要的工程意义。考虑到行星减速机故障信号提取难度高、难度大、非平凡性,提出了一种基于时变本征相关(TDIC)的故障特征提取方法,并结合随机森林分类器进行故障分类。该方法基于信号频率分析,自适应地提取不同物理场信号之间相关性高的片段作为信号特征。采用随机森林模型对行星齿轮箱中的故障进行分类,并与 CNN、KNN 和 XGBoost 模型进行比较。实验结果表明,所提方法具有优异的故障分类性能。
 
Keywords
planetary gearbox fault diagnosis,Time-Dependent Intrinsic Correlation,feature extraction,Quadruped Robot,Random Forest
Speaker
ChenYuFan
Master Degree Candid Shanghai University

Submission Author
ChenYuFan Shanghai University
FanBeibei Shanghai Key Laboratory of Intelligent Manufacturing and Robotics
XiongXin Shanghai Key Laboratory of Intelligent Manufacturing and Robotics
ShiMaoping Shanghai University
Comment submit
Verification code Change another
All comments

Important Dates

15th August 2024   31st August 2024- Manuscript Submission

15th September 2024 - Acceptance Notification

1st October 2024 - Camera Ready Submission

1st October 2024  – Early Bird Registration

 

Contact Us

Website:

https://icsmd2024.aconf.org/

Email:
icsmd2024@163.com