Bearing Fault Diagnosis Based on VMD-KPCA Fusion Algorithm for Vibration and Sound Signals
ID:150 Submission ID:92 View Protection:ATTENDEE Updated Time:2024-10-23 10:02:35 Hits:36 Poster Presentation

Start Time:Pending (Asia/Shanghai)

Duration:Pending

Session:[No Session] » [No Session Block]

No files

Abstract
传统的信号处理方法在处理振动和声音信号时,往往无法充分反映轴承的运行状态,导致故障检测的准确性不足。信号单一,容易受到周围环境的干扰,影响设备可靠性的判断。该文提出了一种基于VMD(variational modal decomposition,变分模态分解)和KPCA(kernel principal component analysis,核主成分分析)的声音和振动信号融合算法,用于轴承故障诊断。VMD 算法对信号进行高效分解以减少混叠现象,而 KPCA 通过核函数增强了特征提取能力。该算法融合了振动和声学信号的特点,可以实现信息的互补,提高诊断的准确性和鲁棒性。在本研究中,通过分析正常和多种故障状态的信号,实现了数据的高效处理和准确诊断。实验结果表明,本文提出的 VMD-KPCA 算法在提高故障识别率的同时表现出优异的鲁棒性,具有良好的实际应用前景。未来的研究可以进一步探索该算法的优化,以满足工业实际应用的需求。
Keywords
轴承故障,信号融合,VMD,KPCA
Speaker
WangFengtao
讲师 Anhui Polytechnic University

Submission Author
YuanhaoXiong Anhui Polytechnic University
ZhaoyangTian Anhui Polytechnic University
ShupingYan Anhui Polytechnic University
YubingZhang Ningbo University of Finance and Economics
YongqiangXiao Efte Intelligent Equipment Co., LTD
WangFengtao Anhui Polytechnic University
Comment submit
Verification code Change another
All comments

Important Dates

15th August 2024   31st August 2024- Manuscript Submission

15th September 2024 - Acceptance Notification

1st October 2024 - Camera Ready Submission

1st October 2024  – Early Bird Registration

 

Contact Us

Website:

https://icsmd2024.aconf.org/

Email:
icsmd2024@163.com