Application of adaptive feature mode decomposition based on synthetic index in fault feature extraction of rolling bearings
ID:136 Submission ID:66 View Protection:ATTENDEE Updated Time:2024-10-23 10:02:34 Hits:34 Poster Presentation

Start Time:Pending (Asia/Shanghai)

Duration:Pending

Session:[No Session] » [No Session Block]

No files

Abstract
滚动轴承故障的初始迹象通常很微妙,很容易被背景噪声掩盖,这使得故障特征的提取具有挑战性。为了解决这个问题,准确表征轴承故障特征和伴随的噪声至关重要。本研究介绍了一种从滚动轴承中提取特征的新方法,利用称为复合特征模态分解 (CFMD) 的综合指数。最初,采用稀疏最大谐波噪声比反卷积 (SMHD) 算法来放大弱故障信号。该文提出一种新的综合评价指标,该指标结合了“余弦相似性、峰度和包络熵”,用于自适应地选择FMD的最优参数组合,并基于该指标过滤本征模态函数(IMF)。随后,为了提取更详细的故障特征,利用多尺度模糊熵 (MFE) 来量化每个有效 IMF 的故障特征,然后使用支持向量机 (SVM) 对其进行分类和识别。CFMD 方法的有效性通过对轴承失效数据的分析得到验证。与其他常用的诊断技术相比,该方法在提取轴承故障信息方面表现出卓越的准确性和有效性。
Keywords
sparse maximum harmonic noise ratio deconvolution,feature mode decomposition,comprehensive evaluation index,weak fault feature extraction
Speaker
Submission Author
PengLinhao Anhui University
LiuFang Anhui University
XuLirong Anhui University
BaoXue wen Anhui University
DongShihai Anhui University
LiuYongbin Anhui University
Comment submit
Verification code Change another
All comments

Important Dates

15th August 2024   31st August 2024- Manuscript Submission

15th September 2024 - Acceptance Notification

1st October 2024 - Camera Ready Submission

1st October 2024  – Early Bird Registration

 

Contact Us

Website:

https://icsmd2024.aconf.org/

Email:
icsmd2024@163.com